The quantum group $\mathrm{GL}_{\mathrm{h}}{ }^{(2)}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1239
(http://iopscience.iop.org/0305-4470/25/22/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The quantum group $\mathbf{G L}_{h}(2)$

B A Kupershmidt
University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 27 Juty 1992

Abstract

Abstracl. Among all quantum group structures on the space Mat(2) of 2×2 matrices, how many have a central quantum determinant, so that one can define quantum SL(2) out of quantum GL(2)? Up to isomorphism, there are two such structures, GL ${ }_{q}(2)$ and $\mathrm{GL}_{h}(2)$. The former is well known, the latter is described in this paper.

Quantum groups are multiplying like rabbits after rain. Restricting oneself to quantum deformations of the space $\operatorname{Mat}(n)$ of $n \times n$ matrices, the variety is still large and growing. In some of these deformations, like $\mathrm{GL}_{q}(n)$, the quantum determinant is central, while in others, like $\mathrm{GL}_{p, q}(n)$, it is not. If one imposes the natural requirement that the quantum deformation of $\mathrm{GL}(n)$ is restricted to that of $\mathrm{SL}(n)$, this amounts to the property of quantum determinant being central. For the case $n=2$, it is possible to classify all such deformations. Up to isomorphism, there exist just two: the well known $\mathrm{GL}_{q}(2)$ (Drinfel'd 1986) and $\mathrm{GL}_{h}(2)$ (or $\mathrm{Mat}_{h}(2)$), given on generators of a matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ by the relations:

$$
\begin{align*}
& b a=a b+h\left(a^{2}-a d+b c\right)-h^{2} a c \\
& c a=a c-h c^{2} \\
& d a=a d+h(a c-c d)-h^{2} c^{2}(1) \\
& c b=b c-h(a c+c d) \tag{1}\\
& d b=b d+h\left(a d-b c-d^{2}\right)+h^{2} a c \\
& d c=c d+h c^{2}
\end{align*}
$$

where h is a deformation parameter. The quantum determinant

$$
\begin{equation*}
\operatorname{det}_{h}(M)=\mathcal{D}=a d-b c+h a c=d a-c b-h c a \tag{2}
\end{equation*}
$$

is central.
The formulae (1), (2) can be arrived at via the following route. Let us start by classifying all multiplicative Poisson brackets on Mat(2) for which the determinant
det is central. It is easy to show that all multiplicative Poisson brackets on Mat(2) result from the condition of being Poisson symmetries of a pair of Poisson planes
$\{x, y\}=P_{2}(x, y)$
$\{\xi, \xi\}=Q_{2}(\xi, \eta) \quad\{\eta, \eta\}=Q_{2}^{\prime}(\xi, \eta) \quad\{\xi, \eta\}=Q_{2}^{\prime \prime}(\xi, \eta)$
where P_{2}, Q_{2}, \ldots are quadratic polynomials. (A similar property holds for all matrix groups and supergroups.) By a linear change of coordinates, the Poisson bracket ($3 a$) can be reduced to one of the two canonical forms:

$$
\begin{equation*}
\{x, y\}=x y \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\{x, y\}=y^{2} \tag{5a}
\end{equation*}
$$

depending upon whether the roots of P_{2} are distinct or not. (If P_{2} vanishes then the det is central iff $Q_{2}=Q_{2}^{\prime}=Q_{2}^{\prime \prime}=0$.) In these coordinates, the det is central iff the Poisson brackets ($3 b$) take the form, respectively,

$$
\begin{equation*}
\{\xi, \xi\}=\{\eta, \eta\}=0 \quad\{\xi, \eta\}=\eta \xi \tag{4b}
\end{equation*}
$$

and

$$
\begin{equation*}
\{\xi, \xi\}=2 \xi \eta \quad\{\eta, \eta\}=\{\xi, \eta\}=0 \tag{5b}
\end{equation*}
$$

Upon quantization, the Poisson brackets (4) and (5) become, respectively,

$$
\begin{equation*}
x y=q^{-1} y x \quad \xi^{2}=\eta^{2}=0 \quad \xi \eta=-q \eta \xi \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x y=y x+h y^{2} \quad \xi^{2}=h \xi \eta \quad \eta^{2}=0 \quad \eta \xi=-\xi \eta \tag{7}
\end{equation*}
$$

The quantum symmetries of (6) lead to the familiar $\mathrm{Mat}_{q}(2)$ (Manin 1988). The quantum symmetries of (7) result in formulae (1). Formula (2) for the quantum determinant follows from the standard definition

$$
\xi^{\prime} \eta^{\prime}=\mathcal{D} \xi \eta \quad\binom{\xi^{\prime}}{\eta^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\xi}{\eta}
$$

Thus, the quantum determinant is multiplicative. Set

$$
\widetilde{M}=\left(\begin{array}{cc}
d+h c & -b+h(d-a+h c) \\
-c & a-h c
\end{array}\right) .
$$

It is easy to check that

$$
\widetilde{M}=\widetilde{M} M=\mathcal{D} \mathbf{1} .
$$

From this one deduces by the Takeuchi method that \mathcal{D} is central:

$$
\mathcal{D} M=(M \widetilde{M}) M=M(\widetilde{M} M)=M \mathcal{D}
$$

Hence,

$$
M^{-1}=\mathcal{D}^{-1} \widetilde{M}=\widetilde{M} \mathcal{D}^{-1}
$$

Further properties of $\mathrm{Mat}_{h}(2)$ follow.
(i) The ring of regular functions on $\mathrm{Mat}_{h}(2)$ has the PBW property: the monomials $\left\{a^{n} b^{m} c^{k} d^{l} \mid n, m, k, l \in \mathbb{Z}_{+}\right\}$form a basis. This is easily checked with the help of the Diamond lemma (Bergman 1978).
(ii) The powers of M are also quantum matrices, with the deformation parameter $k h$:

$$
\begin{equation*}
M^{k} \in \operatorname{Mat}_{k h}(2) \quad k \in \mathbb{Z} \tag{8}
\end{equation*}
$$

This is similar to the other case: $\left\{M \in \operatorname{Mat}_{q}(2)\right\} \Rightarrow\left\{M^{k} \in\right.$ Mat $\left._{q k}(2)\right\}$ (Corrigan et al 1990). As in that case,

$$
\begin{equation*}
\operatorname{det}_{k h}\left(M^{k}\right)=\left[\operatorname{det}_{h}(M)\right]^{k} \quad k \in \mathbb{Z} \tag{9}
\end{equation*}
$$

(If in formulae (7) one replaces $\xi^{2}=h \xi \eta$ by $\xi^{2}=-h \xi \eta$, properties (8) and (9) will still hold although det_{h} will no longer be central, and these facts remain true for $\operatorname{Mat}_{h}(n)$.)
(iii) The elements c and $a-d$ are normalizing. Hence, one can self-consistently reduce $\mathrm{Mat}_{h}(2)$ to the upper-triangular case by setting $c=0$. Further reductions are possible: $a=d ; a=d^{-1} ; a=d, b=0 ; a=d=1$. Notice that the generators a, c, d form a closed subalgebra.
(iv) The ring of invariants (i.e. the polynomial centre) of $\mathbb{C}\left[\mathrm{Mat}_{h}(2)\right]$ is generated by $\mathcal{D}=\operatorname{det}_{h}(M)$. The field of invariants is generated by \mathcal{D} and

$$
\begin{equation*}
\operatorname{Cas}_{2}(M)=c^{-1}(a-d)=(a-d) c^{-1} \tag{10}
\end{equation*}
$$

For this invariant, one has a companion formula to (9):

$$
\begin{equation*}
\operatorname{Cas}_{2}\left(M^{k}\right)=\operatorname{Cas}_{2}(M)+(k-1) h \quad 0 \neq k \in \mathbb{Z} \tag{11}
\end{equation*}
$$

For the case $M \in \operatorname{Mat}_{q}(2)$ one has similar statements, with (10) being replaced by (Kupershmidt 1991)

$$
\operatorname{Cas}_{2}(M)=c^{-1} b=b c^{-1}
$$

and (11) being replaced by

$$
\operatorname{Cas}_{2}\left(M^{k}\right)=q^{1-k} \operatorname{Cas}_{2}(M) \quad 0 \neq k \in \mathbb{Z}
$$

(v) Similar to the case of Mat_{q} (2) (Ewen et al 1991), one has quantum analogues of the Cayley-Hamilton theorem:

$$
\begin{array}{ll}
X^{2} M^{2}=(a+d-h c) X M-\mathcal{D} 1 & X=\left(\begin{array}{cc}
1 & -h \\
0 & 1
\end{array}\right) \\
M^{2} Y^{2}=M Y(a+d+h c)-\mathcal{D} \mathbf{1} & Y=\left(\begin{array}{cc}
1 & h \\
0 & 1
\end{array}\right) \tag{12b}
\end{array}
$$

(vi) If

$$
M^{k}=\left(\begin{array}{ll}
a_{k} & b_{k} \\
c_{k} & d_{k}
\end{array}\right)
$$

we define quantum traces as

$$
\begin{equation*}
t_{k}^{ \pm}=t_{k}^{ \pm}\left(M^{k}\right)=a_{k}+d_{k} \pm k h c_{k} \tag{13}
\end{equation*}
$$

so that

$$
t_{k}^{+}=\operatorname{tr}\left(M^{k} Y^{k}\right) \quad t_{k}^{-}=\operatorname{tr}\left(X^{k} M^{k}\right)
$$

From (12a) and (12b) we deduce, as in the case of Mat $_{q}(2)$ (Kupershmidt 1992), that

$$
\begin{align*}
& t_{k+2}^{-}=t_{1}^{-} t_{k+1}^{-}-\mathcal{D} t_{k}^{-} \tag{14a}\\
& t_{k+2}^{+}=t_{k+1}^{+} t_{1}^{+}-\mathcal{D} t_{k}^{+} \tag{14b}
\end{align*}
$$

Since

$$
t_{-1}^{ \pm}=\mathcal{D}^{-1} t_{1}^{ \pm}
$$

it follows that all the t_{k}^{+}commute between themselves, $k \in \mathbb{Z}$, and similarly for the t_{k}^{-}. Also,

$$
\begin{equation*}
c t_{k}^{+}=t_{k}^{-} c \tag{15}
\end{equation*}
$$

Suppose now that

$$
S=\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right)
$$

is a matrix whose entries commute with those of M. Define

$$
\begin{equation*}
\operatorname{Tr}_{h}(S)=s_{11}+s_{22}-2 h s_{21} \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Tr}_{h}\left(M S M^{-1}\right)=\operatorname{Tr}_{h}(S) \tag{17}
\end{equation*}
$$

(vii) In the quasiclassical limit $h \rightarrow 0$, formulae (1) yield the following multiplicative Poisson brackets on GL(2):

$$
\begin{align*}
& \{a, b\}=a d-b c-a^{2} \quad\{a, c\}=c^{2} \quad\{a, d\}=c(d-a) \\
& \{b, c\}=c(d+a) \quad\{b, d\}=d^{2}+b c-a d \quad\{c, d\}=-c^{2} \tag{18}
\end{align*}
$$

Denoting $\bar{f}=\left.\mathrm{d} f\right|_{e}$ for any $f \in \operatorname{Fun}(\mathrm{GL}(2))$ (e is the unit element of GL(2)), we can extract from (18) the bi-algebra structure on $\mathrm{gl}(2)$, by the formula (Drinfel'd 1986)

$$
[\bar{f}, \bar{g}]=\overline{\{f, g\}} .
$$

The resulting commutators on $g(2)^{*}$ are

$$
\begin{array}{lrr}
{[\bar{a}, \bar{b}]=\bar{d}-\bar{a}} & {[\bar{a}, \bar{c}]=0} & {[\bar{a}, \bar{d}]=0} \\
{[\bar{b}, \bar{c}]=2 \bar{c}} & {[\bar{b}, \bar{d}]=\bar{d}-\bar{a}} & {[\bar{c}, \bar{d}]=0 .} \tag{19}
\end{array}
$$

In the notation

$$
I=\bar{a}+\bar{d} \quad H=\bar{a}-\bar{d} \quad E=\bar{b} \quad F=\bar{c}
$$

formulae (19) become
$[E, F]=2 F \quad[E, H]=2 H \quad[F, H]=0 \quad[I$, anything $]=0$.
The Casimir element is (cf formula (10))

$$
\begin{equation*}
\text { Cas }=F^{-1} H=H F^{-1}=\bar{c}^{-1}(\bar{a}-\bar{d})=(\bar{a}-\bar{d}) \bar{c}^{-1} . \tag{21}
\end{equation*}
$$

(viii) Let G be a semisimple Lie group with the Lie algebra \mathcal{G}. The ring of regular functions on $\mathrm{G}, \mathbb{C}[G]$, consists of matrix elements of finite-dimensional representations $\rho: \mathbf{G} \rightarrow \operatorname{Aut}(V)$ of \mathbf{G}, i.e. of functions $\langle l, \rho(g)(v)\rangle, g \in \mathrm{G}, l \in V^{*}, v \in V$. Let $r \in \Lambda^{2}(\mathcal{G})$ be a classical r-matrix, so that

$$
\begin{equation*}
\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right]=0 . \tag{22}
\end{equation*}
$$

Then the Poisson bracket

$$
\begin{align*}
& \left\{\left(l_{1}, \rho_{1}(g)\left(v_{1}\right)\right\rangle,\left\langle l_{2}, \rho_{2}(g)\left(v_{2}\right)\right\rangle\right\} \\
& \quad=\left\langle l_{1} \otimes l_{2},\left[\left(\rho_{1} \otimes \rho_{2}\right)_{*}(r), \rho_{1}(g) \otimes \rho_{2}(g)\right]\left(v_{1} \otimes v_{2}\right)\right\rangle \tag{23}
\end{align*}
$$

defines a multiplicative Poisson bracket on G. (See Drinfel'd 1986.) When $\mathbf{G}=$ $\mathrm{GL}(n)$, one can take $\rho_{1}=\rho_{2}$ as the defining representation. Then formula (23) simplifies to

$$
\begin{equation*}
\left\{M_{i}^{\alpha}, M_{j}^{\beta}\right\}=\sum_{k l} r^{k l}\left[\left(I_{k} M\right)_{i}^{\alpha}\left(I_{i} M\right)_{j}^{\beta}-\left(M I_{k}\right)_{i}^{\alpha}\left(M I_{l}\right)_{j}^{\beta}\right] \tag{24}
\end{equation*}
$$

where $r=\sum r^{k l} I_{k} \otimes I_{l}$ is the coordinate expression of the r-matrix in a basis of \mathcal{G}. For the case at hand, formulae (18) can be written in the form (24) with the r-matrix

$$
\begin{equation*}
r=h \otimes e-e \otimes h \tag{25}
\end{equation*}
$$

where $h=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right), e=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$ are elements of the basis of [sl(2) and] $\mathrm{gl}(2)$. The r-matrix (25) satisfies the classical Yang-Baxter equation (CYBE) (22).
(ix) Many different generalizations are possible for the case of $\operatorname{Mat}(n), n>2$ (and also for \mathbb{Z}_{2}-graded groups $\operatorname{Mat}(n \mid m)$). For example, for $n=3$, apart from obvious versions of formula (25) (depending upon various embeddings of $\mathrm{sl}(2)$ into $\mathrm{sl}(3)$), one also has the r-matrix

$$
\begin{equation*}
r=-h_{1} \wedge\left(e_{1}+2 e_{2}\right)+\theta h_{2} \wedge\left(2 e_{1}+e_{2}\right) \quad \theta \in \mathbb{C} \tag{26}
\end{equation*}
$$

which does not satisfy the CYBE (22). (Here $h_{i}=E_{i i}-E_{i i+1}, e_{1}=E_{12}, e_{2}=E_{23}$ in the usual notation.) This situation originates in the symmetries of the threedimensional Poisson space (Dufour and Haraki 1991)

$$
\begin{equation*}
\left\{x_{i}, x_{i+1}\right\}=\partial P / \partial x_{i+2} \quad i \in \mathbb{Z}_{3} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
P=x_{2}^{2} x_{3}+\theta x_{1} x_{3}^{2} \tag{28}
\end{equation*}
$$

In contrast, the r-matrix
$r=\left(\alpha_{1} h_{1}+\alpha_{2} h_{2}\right) \wedge E_{13}+\epsilon\left(\alpha_{1}+\alpha_{2}\right) e_{1} \wedge e_{2} \quad \alpha_{1}, \alpha_{2} \in \mathbb{C} \quad \epsilon=0,1$
does satisfy the CYBE (22).

References

Bergman G 1978 Adv. Math. 29 178-218
Corrigan E, Fairlie D B, Fletcher P and Sasaki R 1990 J. Math. Phys. 31 776-80
Drinfel'd V G 1986 Proc. Iht. Congr. on Mathematics (Berkeley, 1986) pp 798-820
Dufour J-P and Haraki A 1991 C. R Acad. Sci. Paris 312137
Ewen H, Ogievetsky O and Wess J 199! Lett Math Phys. 297-305
Kupershmidt B A 1991 Mechanics, Analysis and Geometry: 200 Years After Lagrange ed M Francaviglia (Amsterdam: Elsevier) pp 171-99
-_ 1992 J. Phys. A: Math. Gen. 25 L915-9
Manin Yu I 1988 Quantum Groups and Non-Commutative Geometry (Montréal: CRM)

