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LElTER TO THE EDITOR 

The quantum group GL,,(2) 
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University of lknnessee Space Inslitute, 'hllahoma, RI 37388, USA 

Received 27 July 1992 

AbslmcL Among all quanlum group structures on the space Mat(2) of 2 x 2 mauices. 
how many have a central quantum determinant. so that one can define quantum SY2) 
oul of quanlum GYZ)? Up Lo isomorphism, there are two such SLIIICIU~S, G b ( 2 )  and 
GLh(2). ' I l l h e  former is well known, the latter is described in this paper. 

Quantum groups are multiplying like rabbits after rain. Restricting oneself to quantum 
deformations of the space Mat(n) of n x n matrices, the variety is still large and 
growing. In some of these deformations, like GL,(n), the quantum determinant 
is central, while in others, l i e  GLp,,(n), it is not. If one imposes the natural 
requirement that the quantum deformation of GL(n) is restricted to that of SL(n), 
this amounts to the property of quantum determinant being central. For the case 
R = 2, it is possible to classify all such deformations. Up to isomorphism, there exist 
just two: the well known GLq(2) (Drinfel'd 1986) and GLh(2) (or Math(2)), given 
on generators of a matrix M = (: j) by the relations: 

ba = ab+ h(a2  - ad + bc) - h2ac 

ca = ac - h c  

d a = a d + h ( a c - c d ) -  h2c2(1) 

cb = 6c - h( ac + cd)  

db = bd + h(ad - bc - d 2 )  + h2ac 

dc = cd + hc' 

2 

where h is a deformation parameter. The quantum determinant 

= ZI = a d -  6c+  hac  = da - c b -  hca det (M)  h (2) 

is central. 
The formulae (I), (2) can  be arrived at via the following route. Let us start by 

classifying all multiplicative Poisson brackets on Mat(2) for which the determinant 
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det is central. It is easy to show that all multiplicative Poisson brackets on Mat(2) 
result from the condition of being Poisson symmetries of a pair of Poisson planes 
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{.,Y} = Pz(.,Y) ( 3 4  

t E , F }  = Q ~ ( C , V )  { v ~ v }  = Q Z C ~ V )  {E371 = Q Y ( C 9 v )  (3) 
where P2, Q2, ... are quadratic polynomials. (A similar property holds for all matrix 
- groups and supergroup) By a linear change of coordinates, the Poisson bracket (3a) 
can be reduced to one of the WO canonical forms: 

{.,YI = "Y (40) 

{.> Yl = Y2 (54 

and 

depending upon whether the roots of P2 are distinct or not. (If Pz vanishes then the 
det is central iff Q Z  = Q; = Q;' = 0.) In these coordinates, the det is central iff the 
Poisson brackets (36) take the form, respectively, 

{ C , C l =  { v , v l =  0 { F , v }  = vF (46) 

{<,<I = 2Ev { v , v l  = { F , v l =  0. (5b) 

zy = q- lyz  (2 = 02 = 0 = -qvE (6) 

cy = yz + hy2 E' = h<v q 2 = 0  v E  = 4 0 .  (7) 

and 

Upon quantization, the Poisson brackets (4) and (5) become, respectively, 

and 

The quantum symmetries of (6) lead to the familiar Mat,(2) (Manin 1988). The 
quantum symmetries of (7) result in formulae (1). Formula (2) for the quantum 
determinant follows from the standard definition 

Thus, the quantum determinant is multiplicative. Set 

E =  ( d + h c  - b + h ( d - a + h c )  
- C  n - hc 

It is easy to check that 

M = MM = D l .  

D M  = ( M M I ) M  = M ( % M )  = M'I,. 

From this one deduces by the Tikeuchi method that 'I, is central: 

Hence, 
M-1 = D - 1 G  = MlD-1. 

Further properties of Mat,, (2) follow. 
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(i) The ring of regular functions on Math(2) has the PBW property: the monomials 
{a"bmckd' I n , m , k , l  E Z+) form a basis. mi is easily checked with the help of 
the Diamond lemma (Bergman 1978). 

(ii) The powers of M are also quantum matrices, with the deformation parameter 
kh: 

M' E Matkh(2) k E Z. (8) 

This is similar to the other case: { M  E Mat,(2)) + {M' E Mat,,(2)) (Corrigan et 
a1 1990). As in that case, 

det(M') k h  = [d;t(M)lk k E Z. (9) 

(If in formulae (7) one replaces c2 = h<q by FZ = -hcv, properties (8) and (9) 
will still hold although det, will no longer be central, and these facts remain true for 

(iii) The elements c and a-d are normalizing. Hence, one can self-consistently 
reduce Math(2) to the upper-triangular case by setting c = 0. Further reductions are 
possible: a = d; a = d- l ;  a = d, b = 0; a = d = 1. Notice that the generators 
a, c, d form a closed subalgebra. 

(iv) The ring of invariants (i.e. the polynomial centre) of @[Mat,,(2)] is generated 
by 'D = det,(M). The field of invariants is generated by D and 

Math(n).) 

Cas, (M)  = c - l (a  - d )  = ( a  - d)c-l. (10) 

For this invariant, one has a companion formula to (9): 

Cas,(M')=Cas,(M)+(k-1)h 0 # k ~ Z .  (11) 

For the case M E Mat,(2) one has similar statements, with (10) being replaced by 
(Kupershmidt 1991) 

Cas,(M) = c - l b  = bc-' (1W 

and (11) being replaced by 

Cas,(M") = ql-kCaSz(M) 0 # k E z. (11') 

(v) Similar to the case of Mat, (2) (Ewen et al 1991), one has quantum analogues 
of the Cayley-Hamilton theorem: 

X z M z  = (a + d - hc)XM - 'Dl 

M Z Y Z  = M Y (  a + d + hc) - 'Dl 

x =  (; -;> 
Y = ( ;  ;>. 

('2) 

(1%) 
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(vi) If 

we define quantum traces as 

t: = t : ( M k )  = a ,  + d, * khc, 
so that 

t: = t r ( M k Y L )  1 ;  = t r (XkMMk).  

From (1%) and (126) we deduce, as in the case of Mat, (2) (Kupershmidt 1992). that 

it folIows that all the t$  cOmmute between themselves, k E Z, and similarly for the 
1 ; .  Also, 

ct: = t ; c .  (15) 

Suppose now that 

s =  (a: ::) 
is a matrix whose entries commute with those of M.  Define 

Trh(S) = sI1 + sn -2hs , , .  

?hen 

Tr , (MSM-')  =Tr,(S). 

k,X the qsns;c!assia! !iLT,it .L, - . e, (1) yie.d ;he f&*ing 

{ a , b }  = ad- be-  a { a , . }  = c  { a , d } = c ( d - a )  

\..'I 
multiplicative Poisson brackets on GL(2): 

{ b , c }  = c(d+ a) { b , d )  = d 2 +  bc -  ad { c , d }  = - e 2 .  (18) 

Denoting f = dfl, for any f E Fun(GL(2)) (e is the unit element of GL(2)), we can 
extract from (18) the bi-algebra structure on gl(2), by the formula (Drinfel'd 1986) 
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The resulting cOmmutators on gI(2)' are 

[a,K]=;i-a [ E , Z ] = O  [ T i , 4 = 0  

[6, E] = 2E [&,XI = 2 - Ti [E,; i ]  = 0. 

In the notation 

I = i i + 2  H = i i - Z  E = 6  F = T  

formulae (19) hecome 

[ E , F ] = 2 F  [ E , H ] = Z H  [ F , H ] = O  [I, anything]=O. 

The Casimir element is (cf formula (10)) 

Cas= F-'H = N F - ' = ? - ' ( i i - Z )  = ( ? i - z ) F - l .  

(viii) Let G be a semisimple Lie group with the Lie algebra E. The ring of regular 
functions on G, C[G], consists of matrix elements of finitedimensional representations 
p : G - Aut(V) of G, i.e. of functions ( l , p ( g ) ( u ) ) ,  g E G, 1 E V', v E V. Let 
r E Az(G) be. a classical r-matrix, so that 

[ r1z , r '3 ]+[~ ' z , r23 ]+[ r13 , r23]  = o .  (22) 

Then the Poisson bracket 

{(4 9 PI(S)("I))* (12,  P Z ( S ) ( 4 ) )  

= ( 4  63 12,  [ ( P I  @ P z ) * ( r ) , P I ( g )  @ Pz(g)l(% 0 9)) (23) 

defines a multiplicative Poisson bracket on G. (See Drinfel'd 1986.) When G = 
GL(n), one can take pI = pz as the defining representation. Then formula (23) 
simplifies to 

where T = rkl I, @ I ,  is the coordinate expression of the r-matrix in a basis of 6.  
For the case at hand, formulae (18) can be written in the form (24) with the r-matrix 

r = h @ e - e @ h (25) 

where h = 
r-matrix (25) satisfies the classical Yang-Baxter equation (CYBE) (22). 

e = (: A) are elements of the basis of [s1(2) and] gl(2). The 
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(a) Many different generalizations are possible for the case of Mat(n), n > 2 
(and also for E,-graded groups Mat(n1m)). For example, for n = 3, apart from 
obvious versions of formula (25) (depending upon various embeddings of sI(2) into 
s1(3)), one also has the r-matrix 

r = -hl A (e, + 2e2) + Oh, A (2e, + e*) 0 E C (26) 

which does n n  safisfy the CYBE (22). (Here hi  = Eii - E,,+,, e, = E,,,  e2 = E, 
in the usual notation.) This situation originates in the symmetries of the three- 
dimensional Poisson space (Dufour and Haraki 1991) 

{ z i , z i + , )  = ap/azi+,  i E E3 (27) 

P = +, + ezlz:. 

where 

(28) 

In contrast, the r-matrix 

r = ( a l h l + a , h , ) A E l ~ + ~ ( u l + a , ) e , A e z  a , ,a2E@ t = 0 , 1  (29) 

does satisfy the CYBE (22). 
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