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LETTER TO THE EDITOR

The quantum group GL,(2)

B A Kupershmidt
University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 27 July 1992

Abstract. Among all quantum group structures on the space Mat(2) of 2 x 2 matrices,
how many have a central quantum determinant, so that one can define quantum SL(2)
out of quantum GL(2)? Up to isomorphism, there are two such structures, GLy(2) and
GL,,(2). The former is well known, the latter is described in this paper.

Quantum groups are multiplying like rabbits after rain. Restricting oneself to quantum
deformations of the space Mat(n) of n x n matrices, the variety is still large and
growing In some of these deformations, like GL, (=}, the quantum determinant
is central, while in others, like GL,  (n), it is not. If one imposes the natural
requirement that the quantum deformation of GL(n) is restricted to that of SL(n},
this amounts to the property of quantum determinant being central. For the case
n = 2, it is possible to classify alf such deformations. Up to isomorphism, there exist
just two: the well known GL,(2) (Drinfel'd 1986) and GL,(2) (or Mat, (2)), given

on generators of a matrix M = (% }) by the relations:

ba = ab+ h(a? — ad + be) ~ hlac
ca = ac — he?

da = ad + h(ac—ed) — h%c3(1)

¢y
ch = be— h(ac+ cd)
db = bd + h(ad — be — d*} + hlac
dc = ed + hc?
where h is a deformation parameter. The quantum determinant
dft(M):'D=ad——bc+hac=da—cb—hca )

is central.
The formulae (1), (2) can be arrived at via the following route. Let us start by
classifying all multiplicative Poisson brackets on Mat(2) for which the determinant
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det is central. It is easy to show that all multiplicative Poisson brackets on Mat(2)
result from the condition of being Poisson symmetries of a pair of Poisson planes

{z.y} = Py(=,y) (3a)
{eaE} = Q2(£9 77) {775 ??} = Q’Z(Ea Tf) {Es "7} = Qg(‘sa TJ) (3b)

where P, Q,,... are quadratic polynomials. (A similar property holds for all matrix
groups and supergroups.) By a linear change of coordinates, the Poisson bracket (3a)
can be reduced to one of the two canonical forms:

{z,y} ==y (4a)
and

{z,y} = ¢ (5a)
depending upon whether the roots of P, are distinct or not. (If P, vanishes then the
det is central iff Q, = Q) = QF = 0.) In these coordinates, the det is central iff the
Poisson brackets (3b) take the form, respectively,

{&;§} =1{n,n}=0 {&,n}=mn¢ (4b)
and

{£,6} = 2¢n {n,n}={{,n}=0. (Sb}
Upon quantization, the Poisson brackets (4) and (5) become, respectively,

ey=q'yz  £=n"=0  {n=-qn¢ (©)
and

sy=yc+hy  £=htn =0 nf=-£n. M

The quantum symmetries of (6) lead to the familiar Mat,(2) (Manin 1988). The
quantum symmetries of (7) result in formulae (1). Formula (2) for the quantum
determinant follows from the standard definition

€'y = Dén (§)=(i 3) (f,)

Thus, the quantum determinant is multiplicative. Set

M= (dthc —-b+ h(d—a—i-hc)).

e a - hc

It is easy to check that
M= MM =D1.

From this one deduces by the Takeuchi method that D is central:
DM = (MMM = M(MM) = MD.

Hence,
M~'=D~'M = MD™.

Further properties of Mat,, (2) follow.
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(i) The ring of regular functions on Mat, (2) has the PBW property: the monomials
{amb™c*d! | n,m,k,l € Z_} form a basis. This is easily checked with the help of
the Diamond lemma (Bergman 1978).

(ii) The powers of M are also quantum matrices, with the deformation parameter
kh;

M*¥ ¢ Mat, ,(2) kel (8)

This is similar to the other case: {M € Mat,(2)} = {M* € Mat,,(2)} (Corrigan et
al 1990). As in that case,

(}c%t(Mk) = [dft(M)]" keZ. ®)

(If in formulae (7) one replaces &2 = hén by £ = —héxn, properties (8) and (9)
will still hold although det, will no longer be central, and these facts remain true for
Mat, (n).)

(iii) The elements ¢ and a—d are normalizing. Hence, one can self-consistently
reduce Mat, (2) to the upper-triangular case by setting ¢ = (. Further reductions are
possible: @« = d; a = d™'; a =4d, b =0, a = d = 1. Notice that the generators
a,c,d form a closed subalgebra.

(iv) The ring of invariants (i.e. the polynomial centre) of C[Mat, (2)] is generated
by D = det, (M). The ficld of invariants is generated by D and

Cas,(M) = c (e~ d) = (a - d)c". (10)
For this invariant, one has a companion formula © (9):
Cas,( M¥) = Cas,(M) + (k- 1)k O£ keZ. (11)

For the case M € Mat,(2) one has similar statements, with (10) being replaced by
{Kupershmidt 1991)

Cas,(M) = ¢7'b = be™! (10)
and (11) being replaced by
Cas,( M*) = ¢'*Cas,( M) 0#keZ. (11')

(v) Similar to the case of Mat_ (2} (Ewen et a/ 1991), one has quantum analogues
of the Cayley-Hamilton theorem:

X2M? = (a+d—h)XM-D1  X= ((1) "1") (12a)

M?Y?= MY(a+d+he)-DPl V= ((1) ’1‘) (12b)
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(vi) If

= (G )
we define quantum traces as

¥ = t5(M*) = a + d, + khe, (13)
so that

tf = u(M*Y*) t; = tw(X*FM¥),

From (12a) and (12b) we deduce, as in the case of Mat,_ (2) (Kupershmidt 1992), that

tegr = 8 1o — DU (14a)

+ o+ at +

tiy2 = ety — DI (14b)
Since

+F _ p-1,%

I/_l R bl

it follows that all the t',f_’ commute between themselves, k € Z, and similarly for the
;.. Also,

ctf =tje. (15)
Suppose now that
§= (311 S12 )
San Sz

is a matrix whose entries commute with those of M. Define

Tl‘h(S) =3 + Sx "“2’1321. (16)
Then
-1y
Tr,(MSM~) = Tr,(S). (17)
(vily In the quasiclassical limit & — 0, formulae (1) yield the following

multiplicative Poisson brackets on GL(2):

{a,b} = ad — be — a? {a,c} = c? {a,d} = e(d —~ a)
{b,e} = ¢e(d + a) {b,d} = d* + be — ad {e,d} = =2, (18)

Denoting f = df|, for any f € Fun(GL(2)) (e is the unit element of GL(2)), we can
extract from (18) the bi-algebra structure on gl(2), by the formula (Drinfel'd 1986)

5,9 =1{59}
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The resulting commutators on gl(2)* are

0
B.gl=2c [bdj=d-a [5d]=0. (19)

formulae (19) become
[E,F]=2F [E,H}]=2H [F,H] =0 [{, anything] = 0. (20)
The Casimir element is (cf formula (10))
CGs=F'H=HF '=seYa-d) =@-dz'. 1)
{viii) Let G be a semisimple Lie group with the Lie algebra G. The ring of regular
functions on G, C[G], consists of matrix elements of finite-dimensional representations
2 :G — Aut(V) of G, i.e. of functions {{,p(g)(v)), ¢ € G € V', veE V. Let
r € AXG) be a classical r-matrix, so that
[le, ’PB] + [,,,12, 1‘23] + [1‘13, 1,231 =0. (22)

Then the Poisson bracket

{1, 2@ (v}, L2y 22 @) (v2))}
= (, 9 1, [(py ® p3).(7), p1(9) @ po(9)](v; ® vy)} (23)

defines a multiplicative Poisson bracket on G. (See Drinfel’d 1986) When G =
GL(n), one can take p, = p, as the defining representation. Then formula (23)
simplifies to

(Mg, MP} =3 oML M)F (L MYT — (MI)F(M)F] (24)
ki

where r = 5%, @ I, is the coordinate expression of the r-matrix in a basis of .
For the case at hand, formulae (18) can be written in the form {24) with the r-matrix

r=h®e—-e@h (25)

where A = (%), e = () ) are clements of the basis of [sI(2) and] gi(2). The
r-matrix (25) satisfies the classical Yang-Baxter equation (CYBE) (22).
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(ix) Many different generalizations are possible for the case of Mat(n), n > 2
(and also for Z,-graded groups Mat(n|m)). For example, for n = 3, apart from
obvious versions of formula (25) (depending upon various embeddings of sl(2) into
sI(3)), one also has the r-matrix

which does not satisfy the CYBE (22). (Here h; = E;; — E;; 1, e) = E[;, e = Ey

in the usual notation.) This sitvation originates in the symmetries of the three-
dimensional Poisson space (Dufour and Haraki 1991)

{zis @i} = 0P[Oy, t € Zy (27)
where

P = zir, 4 0x,z]. (28)
In contrast, the r-matrix
r={(aghy+ oahy)) AEg+e(oy+ ay)e Ae,y oy, 0, €C e=0,1 (29

does satisfy the CYBE (22).
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